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Summary

We investigate the minimax optimality of regression with the constraint of

demographic parity.

Our model poses the following additional challenges compared to the

existing results of Chzhen et al. (2022):

(Direct discrimination) Mitigating outcome’s variance disparity.

(Indirect discrimination) Addressing indirect discrimination.

We reveal the minimax optimal error rate as σ2
ξB

2dM/n.

Setup

Consider X as non-sensitive features in Rd and S as a sensitive feature within

[M ]. Given noise ξ ∼ N(0, σ2
ξ), the outcome Y is:

Y = f ∗(X, S) + ξ. (1)

Fairness

Definition: demographic parity (Pedreshi et al. 2008)

A regressor f satisfies (strong) demographic parity if for all s, s′ ∈ [M ], and
for all E ∈ σ(f (X, S)),

P{f (X, S) ∈ E|S = s} = P{f (X, S) ∈ E|S = s′}. (2)

Fairness consistency requires the learned regressor to approach an

(exactly) fair regressor as n tends to infinity.

We use the Wasserstain distance-based unfairness score to define

“approaching”.

U(f ) = max
s,s′∈[M ]

W2(νf |s, νf |s′) (3)

Definition: (α, δ)-fairness consistency

A learning algorithm is (α, δ)-consistently fair for an unfairness score U
if there exists constants n0 ≥ 0 and C > 0 independent of n such that

P{U(f̂n) > Cn−α} ≤ δ for all n ≥ n0.

Accuracy

Goal: to obtain a fair version of f ∗, defined as

f ∗
DP = arg minf∈FDP(µ·) E[(f (X, S) − f ∗(X, S))2].
Inaccuracy of f is measured by the mean squared deviation from f ∗

DP:

E(f ; β∗
· , µ·) = E

[
(f (X, S) − f ∗

DP(X, S))2
]
. (4)

Definition: minimax optimal error

Given α > 0 and δ ∈ (0, 1), the minimax optimal error is defined as

En(α, δ) = inf
f̂n:(α,δ)-consistently fair

sup
β∗∈B,µ·∈M

E
[
E(f̂n; β∗, µ·)

]
, (5)

Sources of Unfairness (Direct v.s. Indirect)

(Direct discrimination) Sensitive attribute directly affects the outcome,

regardless of non-sensitive features.

(Indirect discrimination) Sensitive attribute indirectly affects the outcome

through its correlation with non-sensitive features.
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Models

Chzhen et al. (2022) is the sole study demonstrating minimax optimality in

fair regression.

Contrast with Chzhen et al. (2022): our model accounts for a broader

source of discrimination.
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Chzhen et al. (2022)’s model

Non-sensitive features’ model: for a positive semi-definite matrix Σ,
X ∼ N(0, Σ)︸ ︷︷ ︸ . (6)

No dependency on S. No indirect discrimination.

Outcome’s model:

Y = 〈β∗, X〉 + bs︸ ︷︷ ︸+ξ, (7)

Intercepts (bs) may cause direct discrimination.

Our model

Non-sensitive features’ model: for σ2
X > 0,

X ∼ N(µS, σ2
XI)︸ ︷︷ ︸ . (8)

Means depend on on S, leading to indirect discrimination.

Outcome’s model:

Y = 〈β∗
s , X〉︸ ︷︷ ︸+ξ, (9)

Both partial coefficients and intercept may cause direct discrimination.

Challenges

(Direct discrimination)

Variability in partial coefficients leads to varied outcome variances against

S, while diverse intercepts only change the outcome’s mean.

Our model poses a challenge of addressing both variance and mean

disparities.

(Indirect discrimination)

Our model introduces indirect discrimination via µS changes relative to S.
Counteracting this requires estimating µS to fine-tune the regressor,

maintaining consistent output across varying µS.

Main result

1. There is a finite universal constant B > 0 such that

‖β∗
s‖ ≤ B and

(
∑

s∈[M ] ps‖β∗
s‖)2

M

∑
s∈[M ]

‖β∗
s‖−2 ≤ B2 (10)

Greater variation in ‖β∗
s‖ increases B, characterizing dispersion of outcome

variances.

2. There exists a finite universal constant U > 0 such that ‖µs‖ ≤ U .

Main theorem

Given α ∈ (0, 1/2] and δ ∈ (0, 1), suppose M(d − 1) > 16 and n ≥ 12(3d ∨
4 ln(M/δ))/ mins∈[M ] ps.

c
σ2

ξB
2dM

n
− o

(
1
n

)
≤ En(α, δ) ≤ C

σ2
ξB

2dM ∨ σ2
XB2M ∨ B2U 2

n
+ o

(
1
n

)
.

(11)

The upper bound is achieved by a carefully designed plugin estimator (See our

paper for detail).

Implications

The constructed estimator is minimax optimal up to constant depending

on U and σ2
X .

The term σ2
ξdM/n aligns with standard non-fair regression.

(Direct discrimination) The greater the dispersion of outcome variances,

the more difficult it becomes to mitigate direct discrimination due to the

outcome’s variances.

(Indirect discrimination) Indirect discrimination can be mitigated

cost-free if X ’s dependence of S is solely on its mean.
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