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Summary

Problem: we investigate classification problems under covariate shift:

Input X ∈ X , where X is a compact metric space equipped with a metric ρ and
diameter DX .

Label Y ∈ Y , with Y = {0, 1}.
Source distribution P and target distribution Q, with a regression function

η : X → [0, 1] such that PY |X(Y = 1|X) = QY |X(Y = 1|X) = η(X) PX- and QX-almost

surely (covariate shift).

Source sample (X,Y)P = {(Xi, Yi)}nPi=1 ∼ P nP and target sample

(X,Y)Q = {(Xi, Yi)}
nP+nQ
i=nP+1 ∼ QnQ.

Goal: given (X,Y) = (X,Y)P ∪ (X,Y)Q, construct a classifier h : X → Y that minimizes

errQ(h) = EQ1{h(X) 6= Y }. (1)

Analyses: we analyze the convergence rate of excess error for nP and nQ, defined as

EQ(h) = errQ(h) − inf
h∗:measuable

errQ(h∗). (2)

Contributions:

We construct an algorithm with source sample-size consistency, even under support

non-containment conditions.

Introduce ∆-transfer and ∆-self exponents to universally characterize convergence

rate bounds of our and existing works, including Kpotufe et al. [2] and Pathak et al. [3],

enabling fair comparision.

Our convergence rate upper bound is always faster or competitive compared to

Kpotufe et al. [2] and Pathak et al. [3].

Successful Transfer Learning and Source Sample-size
Consistency

A transfer learning algorithm is deemed successful if it achieves source sample-size

consistency:

sup
P,Q

E[EQ(h)] → 0 as nQ → ∞, (3)

where the superemum is taken over an appropriate set of pairs of distributions.

The source sample-size consistency indicates that the algorithm can reduce the error

as the source sample-size increases.

Support Non-containment Environments

Support of source distribution XP = {x ∈ X : PX(B(x, r)) > 0,∀r > 0}.
Support of target distribution XQ = {x ∈ X : QX(B(x, r)) > 0,∀r > 0}.
Support non-containment : XQ 6⊆ XP

XP

XQ
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Source sample-size consistency for likelihood ratio-based bounds requires access to the

likelihood ratio function.
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Dissimilarity measures

Pathak et al. [3]’s dissimilarity measure:

∆PMW(P,Q; r) =
∫

X

1
PX(B(x, r))

QX(dx), (4)

∆PMW becomes infinite under support non-containment environments.

Our dissimilarity measure:

∆V(P,Q; r) =
∫

X
inf

x′∈V(x)

1
PX(B(x′, r))

QX(dx), (5)

where

V(x) =
{
x′ ∈ X : 2Cαρ(x, x′)α <

∣∣∣∣η(x) − 1
2

∣∣∣∣} ∪ {x}. (6)

V(x) denotes the set of the vicinity surrounding the point x.
V(x) is the (nearly-)largest open ball centered at x with consistent labels.

We may avoid zero division by taking the infimum over V(x).
Dissimilarity measure interpretation of Kpotufe et al. [2]:

∆DM(Q,Q; r) = sup
x∈XQ

1
QX(B(x, r))

,∆BCN(Q,Q; r) = N (XQ, ρ, r), (7)

∆KM(P,Q; r) = sup
x∈XQ

QX(B(x, r))
PX(B(x, r))

. (8)

∆-transfer- and ∆-self-exponents

(P,Q) has ∆-transfer-exponent τ if sup0<r≤DX (r/DX )τ∆(P,Q; r) ≤ C .

Q has ∆-self-exponent ψ if sup0<r≤DX (r/DX )ψ∆(Q,Q; r) ≤ C .

Given (P,Q), τ∆ and ψ∆ are the minimum exponents.

Main result

Smoothness: |η(x) − η(x′)| ≤ Cα · ρ(x, x′)α.
Noise condition: QX(0 < |η(X) − 1

2| ≤ t) ≤ Cβt
β.

τ ψ

Kpotufe et al. [2] τ∆KM + min{ψ∆DM, ψ∆BCN} min{ψ∆DM, ψ∆BCN}
Pathak et al. [3] τ∆PMW ψ∆PMW

our τ∆V ψ∆V

Universal rate

k-NN classifier w/ an appropriate k achieves

E
[
EQ(ĥ)

]
≤ C


log(nP + nQ)

(
n

1+β
2+β+max{1,τ/α}
p + n

1+β
2+β+max{1,ψ/α}
Q

)−1
if α = τ or α = ψ,(

n
1+β

2+β+max{1,τ/α}
p + n

1+β
2+β+max{1,ψ/α})
Q

)−1
otherwise .

(9)

For any (P,Q),
τ∆V ≤τ∆PMW ≤τ∆KM+min{ψ∆DM, ψ∆BCN}, (10)

ψ∆V ≤ψ∆PMW≤ min{ψ∆DM, ψ∆BCN}, (11)

In the non-transfer setting, the exponent is − 1+β
2+β+d/α for d-dimensional input.

The expontns of our bound are equivalent to above, except d is replaced by the

∆V-transfer- or ∆V-self-exponent, corresponding to nP or nQ, respectively.
∆V-self-exponent plays a role similar to the dimensionality d, as it is smaller than d.

Experiments

pX(x) ∝ (1 − x2)−τ/2, XP = [−8 1
α·2−1
8 1
α·2

, 8 1
α·2−1
8 1
α·2

], XQ = [−1, 1], η(x) = 1
2 + 1

2 sgn(x)|x|α.
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(a) α = 1
2, τ = 1
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(b) α = 1
2, τ = 2
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