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Summary

Dissimilarity measures

Problem: we investigate classification problems under covariate shift:

" Input X € X, where X' is a compact metric space equipped with a metric p and
diameter Dy.

= label Y € Y, with Y ={0,1}.

= Source distribution P and target distribution @), with a regression function
n: X —[0,1] such that Py x(Y = 1|X) = Qy|x(Y = 1|X) = n(X) Px- and Qx-almost
surely (covariate shift).

= Source sample (X,Y)p ={(X;,Y) }.F; ~ P"" and target sample
(X, Y>Q = {(Xj, }/i)}nPJrnQ ~ Q"

1=np+1

Goal: given (X,Y) = (X,Y)p U (X,Y)q, construct a classifier o : X — Y that minimizes

Lol{h(X)£Y}. (1)
Analyses: we analyze the convergence rate of excess error for np and ng, defined as

Eg(h) =errg(h) — errg(h®). (2)

errg(h) =

inf
h*:measuable

Contributions:

= \WWe construct an algorithm with source sample-size consistency, even under support
non-containment conditions.
* [ntroduce A-transfer and A-self exponents to universally characterize convergence

rate bounds of our and existing works, including Kpotufe et al. [2] and Pathak et al. [3],

enabling fair comparision.
= Our convergence rate upper bound is always faster or competitive compared to
Kpotufe et al. [2] and Pathak et al. [3].

Successful Transfer Learning and Source Sample-size
Consistency

= A transfer learning algorithm is deemed successful if it achieves source sample-size
consistency:
sup E|Eg(h)] = 0 as ng — oo, (3)
P,Q)
where the superemum is taken over an appropriate set of pairs of distributions.
= The source sample-size consistency indicates that the algorithm can reduce the error
as the source sample-size increases.

Support Non-containment Environments

= Support of source distribution Xp = {x € X : Px(B(x,r)) > 0,Vr > 0}.
= Support of target distribution Xp = {z € X : Qx(B(z,r)) > 0,¥r > 0}.
= Support non-containment : Xy € Xp

Xp
2%

Related Work

Properties of bounds under specific conditions.

source support non-
sample-size containment
consistency
Generalization error analyses v
Likelihood ratio-based (V')
Likelihood ratio-based w/ support gap (V') v
11-3] v
our v v

Source sample-size consistency for likelihood ratio-based bounds requires access to the
likelihood ratio function.

Check out arXiv
‘ version!
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Pathak et al. [3]’s dissimilarity measure:

1
Apvw (P, Q1) = d 4
vl P.Qi) = | e Qx(da) ()
Apyvw becomes infinite under support non-containment environments.
Our dissimilarity measure:
1
Ap(P,Q;r) = inf d 5
WP.Qr) = | inf Q) 5)
where
1
V(z) = {x’ c X :2C,p(x,2)* < |n(x) -5 } U{x}. (6)
= V(x) denotes the set of the vicinity surrounding the point .
= V(z) is the (nearly-)largest open ball centered at x with consistent labels.
= We may avoid zero division by taking the infiimum over V(x).
Dissimilarity measure interpretation of Kpotufe et al. [2]:
1
A ,Q);1r) = su AN Q1) =N (X, p, 1), (/)
pm(@, Qs ) xe};@ Qx(B(z, 7)) BeN(@, Q5 7) (Xq, ps 1)
B(x,r
Ax(P, Qi) = sup LXBT) ®

vexy Px(B(x, 7))

A-transfer- and A-self-exponents

" (P, Q) has A-transfer-exponent 7 if supg_,<p.(r/Dx) A(P,Q;r) < C.
= () has A-self-exponent ¢ if SUP0<TSDX(T/DX)¢A(Q> Q;r) <C.

Given (P, Q), Ta and ¥ are the minimum exponents.

Main result

* Smoothness: |n(z) — n(2")| < Cy, - px, 2")°.
* Noise condition: Qx(0 < |n(X) — 1| <t) < Cst”.
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Universal rate

k-NN classifier w/ an appropriate k achieves

146 14+

1
log(np + ng) (nffﬁ e ng e/ O‘}> if =7 ora=n1,

. {SQ(iL)} = ¢ 1453 143 ) —1 (9>
(n;-l-ﬁ—kmax{lﬂ'/a} 4 ngﬁ+max{1,¢/a} > Otherv\/lse .
Forany (P, Q),
(SO — STAKM_I_min{wADM? wABCN}v (10)
wﬁv SwAPMWS min{¢ADM7 wABCN}7 (11)
= |[n the non-transfer setting, the exponent is 2+;ﬁ§/a for d-dimensional input.

= The expontns of our bound are equivalent to above, except d is replaced by the
Ayp-transfer- or Ay-self-exponent, corresponding to np or ng, respectively.
= Ay-self-exponent plays a role similar to the dimensionality d, as it is smaller than d.

Experiments
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