## Faking Fairness via Stealthily Biased Sampling

Feb 10, 2020. AAAI 2020 on AISI Track

Kazuto Fukuchi University of Tsukuba / RIKEN AIP

Joint work with Satoshi Hara (Osaka University) and Takanori Maehara (RIKEN AIP)

#### **Unfairness in Machine Learning**

| Gender<br>Classifier | Darker<br>Male | Darker<br>Female | Lighter<br>Male | Lighter<br>Female | Largest<br>Gap |
|----------------------|----------------|------------------|-----------------|-------------------|----------------|
| Microsoft            | 94.0%          | 79.2%            | 100%            | 98.3%             | 20.8%          |
| FACE**               | 99.3%          | 65.5%            | 99.2%           | 94.0%             | 33.8%          |
| IBM                  | 88.0%          | 65.3%            | 99.7%           | 92.9%             | 34.4%          |
|                      |                |                  |                 |                   |                |

BUSINESS NEWS

OCTOBER 10, 2018 / 12:12 PM / A YEAR AGO

8 MIN READ

#### Amazon scraps secret Al recruiting tool that showed bias against women

Jeffrey Dastin

SAN FRANCISCO (Reuters) - Amazon.com Inc's (AMZN.O) machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

#### Hiring [Dastin'18]



| Turkish - detected -                                                                                                                                | <br>English <del>•</del>                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| o bir aşçı<br>o bir mühendis<br>o bir doktor<br>o bir hemşire<br>o bir temizlikçi<br>o bir polis<br>o bir asker<br>o bir öğretmen<br>o bir sekreter | she is a cook<br>he is an engineer<br>he is a doctor<br>she is a nurse<br>he is a cleaner<br>He-she is a police<br>he is a soldier<br>She's a teacher<br>he is a secretary |  |
| o bir arkadaş<br>o bir sevgili<br>onu sevmiyor<br>onu seviyor                                                                                       | he is a friend<br>she is a lover<br>she does not like her<br>she loves him                                                                                                 |  |

#### Machine translation [Şarbak's facebook post]



Criminal risk assessment [Angwin+'16]

### **Promotion of Fairness**





#### **Promotion of Fairness**



#### **Promotion of Fairness**



#### **Example: Score based evidence**

#### • Fairness score: a level of fairness

- Many tools for auditing fairness score have developed.
  - E.g., FairML, AI Fairness 360 [Bellamy+'18], Aequitas [Saleiro+'18]

#### **Protected Attribute: Race**

Privileged Group: *White*, Unprivileged Group: *Non-white* 

Accuracy with no mitigation applied is 82%

With default thresholds, bias against unprivileged group detected in 2 out of 5 metrics



AI Fairness 360, Demo, https://aif360.mybluemix.net/data

#### **Fake Fairness of Model**



#### **Evidence of Fairness**

|                      | Pros                   | Cons                                |
|----------------------|------------------------|-------------------------------------|
| Score                | ML model is in private | We cannot detect fake               |
| Benchmark<br>dataset | ML model is in private | We can detect fake(?)               |
| Model                | No chance to fake      | Leakage of confidential information |

#### **Evidence of Fairness**

|                      | Pros                   | Cons                                |
|----------------------|------------------------|-------------------------------------|
| Score                | ML model is in private | We cannot detect fake               |
| Benchmark<br>dataset | ML model is in private | We can detect fake(?)               |
| Model                | No chance to fake      | Leakage of confidential information |

## Contributions

# Fake in benchmark dataset is almost impossible to detect!

- Construct an attack algorithm, stealthily biased subsampling attack.
- Show the generated fake dataset is almost impossible to detect in theoretical and experimental ways.

### Stealthily biased subsampling attack

- Two goals:
  - Fairness: S looks fair
  - **Stealthiness**: Distribution of S is similar to that of D

## Stealthily biased subsampling attack

- Two goals:
  - Fairness: S looks fair
  - **Stealthiness**: Distribution of S is similar to that of D

Target contingency table



## Optimization



## Optimization



• This is a linear programming but its general solver is slow :(

# Develop fast optimization technique with complexity $O(|D|^{2.5})$

#### **Does Wasserstein distance actually work?**



#### **Does Wasserstein distance actually work?**



(Theorem) For KS-test detector, Detectability  $\leq O(K^{1/s}W(\mu^K, \nu^K)) + o(1)$ .

> Minimizing WD => Minimizing upper bound on detectability

#### Synthetic dataset: Settings

- Evaluation criteria
  - Fairness:  $DP = | \mathbb{P}(y = 1 | s = 1) \mathbb{P}(y = 1 | s = 0) |$
  - Stealthiness: Power of KS test with significance 0.05.
- Attacker made subsamples so that  $\mathbb{P}(y = 1 | s = 1) \approx \mathbb{P}(y = 1 | s = 0) \approx \alpha.$
- Original dataset: DP = 0.2, sample size = 1000, and  $\alpha \approx 0.6$ .
- Reference sample size: 200

#### Synthetic dataset: Result



#### **Real datasets: Settings**

- Evaluation criteria
  - Fairness:  $DP = | \mathbb{P}(y = 1 | s = 1) \mathbb{P}(y = 1 | s = 0) |$
  - Stealthiness: W(S, D')
- Attacker made 2000 subsamples so that  $\mathbb{P}(y = 1 | s = 1) \approx \mathbb{P}(y = 1 | s = 0) \approx \alpha.$
- Data
  - COMPAS (4000) and Adult (20000)
  - Reference sample size: 2000
  - $\alpha \approx 0.6$ .

#### **Real dataset: COMPAS**



#### **Real dataset: Adult**



## Conclusions

Summary:

- An evil company can deceive people by publishing fake evidence of fairness.
- We **CANNOT** detect fake in benchmark dataset.

#### We're facing a risk of fake fairness.

#### Paper: https://arxiv.org/abs/1901.08291

Code: <u>https://github.com/sato9hara/stealthily-biased-sampling</u>

Thank you!