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Unfairness in Machine Learning

Gender Darker Darker Lighter Lighter Largest
Classifier Male Female Male Female Gap
BUSINESS NEWS OCTOBER 10, 2018 / 12:12 PM / A YEAR AGO
E" Microsoft 94.0% 79.2% 100% 98.3% 20.8%
. 2 FACE* 99.3% 65.5% 99.2% 94.0% 33.8% Am azon scra pS secret AI

recruiting tool that showed
bias against women

88.0% 65.3% 99.7% 92.9% 34.4%

Jeffrey Dastin 8 MIN READ L f

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O)

machine-learning specialists uncovered a big problem: their

new recruiting engine did not like women.

Hiring [Dastin’18]

Face recognition [Buolamwini+'18]

Turkish - detected~ \!/ ‘D <« English~ [_D ‘D
o bir agci she is a cook

o bir miihendis he is an engineer

o bir doktor he is a doctor

o bir hemsire she is a nurse

o bir temizlikgi he is a cleaner

o bir polis He-she is a police

o bir asker he is a soldier

o bir 6gretmen She's a teacher

o bir sekreter he is a secretary

o bir arkadas he is a friend

o bir sevgili sheis a lover

onu sevmiyor she does not like her
onu seviyor she loves him

Machine translation

[Sarbak’s facebook post] Criminal risk assessment [Angwin+'106]



Promotion of Fairness
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Promotion of Fairness
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Example: Score based evidence

e Fairness score: a level of fairness

e Many tools for auditing fairness score have developed.
e E.g., FairML, Al Fairness 360 [Bellamy+'18], Aequitas [Saleiro+'18]

Protected Attribute: Race
Privileged Group: White, Unprivileged Group: Non-white
Accuracy with no mitigation applied is 82%

With default thresholds, bias against unprivileged group detected in 2 out of 5 metrics

® ® ®

Statistical Parity Equal Opportunity Average Odds Difference Disparate Impact
Difference Difference

1] 1 1 1.5
0.5 0.5 - 0.5 - :

0 Fair 0 Fair 0
-0.5 -0.5 - -0.5 Ue

-1 4 -1 A -1 4 0

i original o original i original i original
Bias Fair Fair Bias

Al Fairness 360, Demo, https://aif360.mybluemix.net/data



https://aif360.mybluemix.net/data

Fake Fairness of Model

Is this fake
evidence?
Service A

Company

-)

Unfair ML model Fake evidence of
fairness
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Evidence of Fairness

Score ML model is in private We cannot detect fake

Benchmark

o -
dataset ML model is in private \We can detect fake(?)

Leakage of confidential

Model . .
Information

No chance to fake
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Contributions

Fake in benchmark dataset is almost

Impossible to detect!

e Construct an attack algorithm, stealthily biased
subsampling attack.

e Show the generated fake dataset is almost impossible to
detect in theoretical and experimental ways.
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Stealthily biased subsampling attack

e Two goals:
e Fairness: S looks fair
e Stealthiness: Distribution of .S is similar to that of D



Stealthily biased subsampling attack

e Two goals:
e Fairness: S looks fair
e Stealthiness: Distribution of § is similar to that of D
Target contingency table

Female Male

Positive 40% 40%

Negative I 10%

Original datasets Subsample |
- ~ g ~ w Fairness

D | ey | S

( ming W(S, D) J

Stealthiness

12
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Optimization

Minimize Wasserstein
distance

Y

Stealthiness ~ IMIN < W(S, D)
Faimess Sub to C(S) = CT

Contingency table of § is
equivalent to target
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Optimization

Minimize Wasserstein
distance

.V
Stealthiness ~ 1IllIlg W(S, D)

Faimess Sub to C(S) = CT

Contingency table of § is
equivalent to target

e This is a linear programming but its general solver is slow :(

Develop fast optimization technique
with complexity O( | D \2'5 )
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Does Wasserstein distance actually work?
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Does Wasserstein distance actually work?

a )
D
_ y Rand
om
( )
select
D
\_ J

(Theorem) For KS-test detector,

Reference

DorS dataset
or S gl
_> | D

A

Goodness-of-fit test

Detectability < O(K""W(u*X, %)) + o(1).

Minimizing WD =>

Minimizing upper bound on detectability
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Synthetic dataset: Settings

e Evaluation criteria
e Faimess: DP = |P(y=1|s=1)—-P(y=1|s=0)]
e Stealthiness: Power of KS test with significance 0.05.

e Attacker made subsamples so that
Py=1|ls=1)~PHy=1|s=0) ~ a.

e Original dataset: DP = 0.2, sample size = 1000, and
a =~ 0.6.

e Reference sample size: 200
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Average DP

Synthetic dataset: Result
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Real datasets: Settings

e Evaluation criteria
e Faimess: DP = |[P(y=1]|s = 1)
e Stealthiness: W(S, D’)

e Attacker made 2000 subsamples so t
Py=1|s=1)~Py=1

e Data
e COMPAS (4000) and Adult (20000)
e Reference sample size: 2000

o~ (.6.

- Ply=1[s=0)]

nat

s=0)~ a.
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Real dataset: COMPAS

----- Baseline = = = Case-control Stealth
A — w —
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(a) Demographic| hrity

DP is much smaller than
original
(dotted line)
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(b) Wasserstein distan| p in P(x)
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Real dataset: Adult
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Conclusions

Summary:

e An evil company can deceive people by publishing fake
evidence of fairness.

e \We CANNOT detect fake in benchmark dataset.

é )

We’re facing a risk of fake fairness.

Paper: https://arxiv.org/abs/1901.08291

Code: https://github.com/sato9hara/stealthily-biased-sampling

Thank you!


https://arxiv.org/abs/1901.08291
https://github.com/sato9hara/stealthily-biased-sampling

